Compound 31 was obtained from 13b in the same manner: colorless prisms (hexane); $\operatorname{mp} 280-282^{\circ} \mathrm{C}$; IR (KBr) $3040,2980,1600,1560$, $1465,1455,1360,1245,1060,990,870,720,665 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.60(18 \mathrm{H}, \mathrm{s}), 8.71(4 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 452\left(\mathrm{M}^{+}\right)$. Anal. Caled for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{Cl}_{4}$: $\mathrm{C}, 63.74 ; \mathrm{H}, 4.90$. Found: $\mathrm{C}, 63.50 ; \mathrm{H}, 4.88$.

Reaction with Iodine. Typical Procedure. A solution of $100 \mathrm{mg}(0.289$ mmol) of 13 a and $441 \mathrm{mg}(1.74 \mathrm{mmol})$ of iodine in 30 mL benzene was refluxed for 48 h . The reaction mixture was washed with 10% sodium thiosulfate solution and then with water. The benzene solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was chromatographed on silica gel with hexane-benzene $1: 1$ as eluant. Colorless crystals ($79.3 \mathrm{mg}, 87.1 \%$) were isolated from the eluate, and the ratio of 28 to 34 was determined to be 60:40 by its NMR spectrum. Similar reactions of $20 \mathrm{a}-\mathrm{c}$ afforded 28 in good yield. In the case of 20 c , the reaction mixture was analyzed by GC to detect formation of 38.

Reaction of the Mixture $(28+34)$ with DDQ. A solution of 79.3 mg of the mixture of $\mathbf{2 8}$ and $\mathbf{3 4}$ and 50 mg of DDQ in 50 mL of toluene was refluxed for 4 h . After the reaction mixture was cooled and concentrated, the residue was extracted and chromatographed on silica gel with hexane:benzene $1: 1$ as the eluant to give $70 \mathrm{mg}(77 \%)$ of 28 as colorless prisms. 28: pale yellow prisms (hexane); mp $210-212^{\circ} \mathrm{C}$; IR (KBr) 3040, 2960, 1600, 1440, 1355, 1220, 920, 875, 800, $715 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.48(18 \mathrm{H}, \mathrm{s}), 7.87(4 \mathrm{H}, \mathrm{s}), 8.14(4 \mathrm{H}, \mathrm{s})$; mass spectrum,
$m / e 314\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26}: \mathrm{C}, 91.67 ; \mathrm{H}, 8.33$. Found: C , 91.67; H, 8.41.

Reaction of the Mixture ($28+\mathbf{3 4}$) with Iodine. A solution of 100 mg of the mixture of 28 and 34 and 441 mg (1.74 mmol) of iodine in 30 mL of benzene was refluxed for 48 h . The reaction mixture was treated as described above to give 95 mg ($\mathbf{2 8}$ and 34) of colorless crystals, whose ratio was not exchanged. The GC analysis of the reaction mixture of $\mathbf{2 0 c}$ with iodine showed the formation of n-propyl iodide (38). Although 2 a was treated with iodine under the same conditions as described above, no product formed.

Registry No. 2a, 76447-51-3; 2b, 76466-35-8; 2c, 76626-78-3; 8b, 65276-10-0; 9a, 67691-33-2; 9b, 81688-07-5; 10a, 81688-08-6; 10b, 81688-09-7; 11a, isomer $1,81688-10-0 ; 11 \mathbf{a}$, isomer 2, 81738-73-0; 11b, isomer 1, 81688-11-1; 11b, isomer 2, 81738-74-1; 12a, isomer 1,81688 -13-3; 12a, isomer 2, 81738-76-3; 12b, isomer 1, 81688-15-5; 12b, isomer 2, 81738-78-5; 13a, 81688-16-6; 13b, 81688-17-7; 16a, 76447-66-0; 16b, 76447-68-2; 16c, 76447-69-3; 16d, 76447-70-6; 17a, 76446-96-3; 17b, 76446-97-4; 17c, 76446-98-5; 17d, 76466-30-3; 18a, 81688-84-8; 18b, 81688-86-0; 18c, 81688-88-2; 18d, 81688-90-6; 20a, 76626-75-0; 20b, 76626-76-1; 20c, 76626-77-2; 20d, 81555-09-1; 27, 76466-34-7; 28, 24300-91-2; 29, 76626-79-4; 30, 81688-18-8; 31, 81688-19-9; 34, 69618-61-7; chloromethyl methyl ether, 107-30-2.

Metacyclophanes and Related Compounds. 7. Preparation and Reduction of [2.2]Metacyclophanequinone ${ }^{1}$

Masashi Tashiro, ${ }^{* 2}$ Keizo Koya, ${ }^{2 b}$ and Takehiko Yamato ${ }^{2}$
Contribution from the Research Institute of Industrial Science, and the Department of Molecular Science and Technology, Graduate School of Engineering Sciences, Kyushu University, Sakamoto, Kasuga, Kasuga-shi, Fukuoka 816, Japan. Received October 19, 1981

Abstract

Two preparative methods for [2.2]metacyclophanequinone (7a) from 8,16-dimethoxy-5,13-di-tert-butyl[2.2]metacyclophane (5) are described. The partially hydrogenated compound 5,8 -dihydroxy[2]-(2,6)-benzoquionono[2]metacyclophane (18) was prepared from 7a. It was found that compound 18 is colorless as a solid but is colored in solution. Some discussions of the above phenomena are also included in this paper.

Although many [2.2]paracyclophanequinones ${ }^{3-9}$ and [3.3]metacyclophanequinone ${ }^{10}$ have been prepared, [2.2]metacyclophanequinones have not yet been synthesized.

We have previously reported that ${ }^{11} 8,16$-dimethoxy- 5,13 -di-tert-butyl[2.2]metacyclophane (5) was easily prepared from anisole in only six steps. This compound (5) seems to be a suitable starting material for the preparation of [2.2]metacyclophanequinone.

Staab and Rebafka ${ }^{6.7}$ reported that the partial hydrogenation of [2.2]paracyclophanequinones $\mathbf{1}$ and $\mathbf{3}$ afforded the interesting intramolecular quinhydrones $\mathbf{2}$ and $\mathbf{4}$ as black and dark violet crystals, respectively.

We undertook the present work in order to prepare the title compound and to obtain some information about its chemical nature.

Results and Discussion

When 5 was treated with BBr_{3} in benzene at room temperature for 24 h , a mixture of $\mathbf{6 a}$ and $\mathbf{6 b}$ (1:1) was obtained with a total yield of 70%. The separation of $\mathbf{6 a}$ and $\mathbf{6 b}$ could be carried out

[^0]

by fractional recrystallization of the mixture with hexane. However, 6a was exclusively obtained by the prolonged reaction (155 h) in 86% yield.
Oxidation of 6a with $\mathrm{Tl}\left(\mathrm{OCOCF}_{3}\right)_{3}{ }^{12-14}$ in $\mathrm{CF}_{3} \mathrm{COOH}$ afforded the desired [2.2]metacyclophanequinone (7a) in 53% yield. Similar oxidation of $\mathbf{6 b}$ gave 5 -tert-butyl-8-methoxy $[2]$-(2,6)benzoquinono[2]metacyclophane (7b) in 70\% yield (Scheme I, route A). Another preparative route (route B) of 7 a from 6 a is shown in Scheme II.

We have previously reported that ${ }^{15}$ the $\mathrm{AlCl}_{3}-\mathrm{CH}_{3} \mathrm{NO}_{2}$ catalyzed trans-tert-butylation of 8,16 -dimethyl- 5,13 -di-tert-butyl[2.2]metacyclophane (8) in benzene afforded 8,16-dimethyl[2.2]metacyclophane (9c) together with tert-butylbenzene (10).

[^1]Scheme I

Scheme II

Similar reaction of 6a gave the expected 8,16-dihydroxy[2.2]metacyclophane (9b) in 70% yield. However, the trans-tert-butylation of 5 afforded a complex mixture, but not the expected compound (9a).

Treatment of the dihydroxy derivative 9 b with NaNO_{2} in the usual manner gave the dioxime 12, which may be produced from the dinitroso derivative (11) initially formed. Compound 12 was also obtained by the reaction of 7a with hydroxylamine.

Although hydrolysis of $\mathbf{1 2}$ under various conditions did not give 7a, oxidation of the diamino derivative (13), which was easily obtained by reduction of 12, afforded 7a in 69% yield (calculated from 12). The diamino derivative (13) is too unstable to be isolated in pure form. However, the oxidation of 13 could be carried out without purification to give a substantial yield of 7a. Heating of 13 with acetic anhydride gave the corresponding N, N^{\prime}-diacetate (14) as a stable compound.

As mentioned above, route B is clearly longer than route A . However, route B seems to be more practical for large-scale investigations, since route A involves $\mathrm{Tl}\left(\mathrm{OCOCF}_{3}\right)_{3}$, which is a poisonous and expensive reagent.

Both Raney Ni catalyzed hydrogenation and reduction of 7a with Zn powder in acetic acid afforded tetrahydroxy[2.2]metacyclophane (15) in 90\% yield (Scheme III). However, reduction of 7 a with Zn powder in a mixture of acetic acid and acetic anhydride gave diacetate 16. When a similar reduction was carried out in the presence of a small amount of concentrated HCl , tetraacetate 17 was produced. It was also obtained by treatment of 16 or 15 with acetic anhydride in the presence of concentrated HCl .

The ${ }^{1} \mathrm{H}$ NMR spectrum of 15 shows that the protons on the oxygen atoms appear as two singlets at 5.0 and 8.3 ppm . The former signal is assigned to the internal OH groups, since their

Scheme III

Scheme IV

$\underset{\sim}{15}+$

Scheme \mathbf{V}

protons are moved upfield by the ring current of the opposite aromatic ring.
The structure of 16 was confirmed by its elemental analysis, spectral data, and comparison with the isomeric compound 22, which will be discussed below.

Quinone 7a was formed immediately when 15 was treated with $10 \% \mathrm{NaOH}$ solution. However, when a solution of $\mathbf{1 5}$ in ethanol was refluxed for a few minutes, quinhydrone 18 was obtained (Scheme IV). This compound (18) was also produced by oxidation of 15 with p-benzoquionone (19) or 7a. In the latter case, 7 a as well as 15 was converted to 18 .
Treatment of $\mathbf{1 8}$ as well as $\mathbf{1 5}$ with $10 \% \mathrm{NaOH}$ solution immediately afforded 7a. Reduction of 18 with Zn powder in acetic acid gave 15 (Scheme V). Acetylation of 18 with acetic anhydride in the presence of concentrated HCl afforded diacetate 21 , which was easily reduced with Zn powder in acetic acid to give diacetate 22. As mentioned above, $\mathbf{2 2}$ is isomeric to 16. Acetylation of $\mathbf{2 2}$ as well as 16 in the presence of concentrated HCl gave tetraacetate 17.

Although $\mathbf{1 8}$ is colorless in the solid state, its solution in CHCl_{3}, $\mathrm{Me}_{2} \mathrm{SO}$, or ethanol is colored. When the solvent was evaporated,

Figure 1. Electronic Spectra of [2.2]metacyclophanequinones: 7a (in CHCl_{3}); $\mathbf{1 8}$ (in EtOH); 21 (in CHCl_{3}).

compound 18 was obtained again as colorless crystals. The ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) spectrum of $\mathbf{1 8}$ shows olefinic protons at 6.24 ppm , aromatic protons at 6.32 ppm , and hydroxy protons at 7.80 and 8.80 ppm as singlets.

As shown in Figure 1, the absorption band characteristic of a benzoquinone structure appeared in the electronic spectra of 7a and 21, but this band was not present in the spectrum of 18. However, the spectrum of 18 shows a band due to a chargetransfer complex at $459 \mathrm{~nm}(\epsilon 260)$.

These facts suggest that the electrons in compounds 2 and 4, reported by Staab and Rebafka, are more mobile than those in 18, since the overlap between the quinone and hydroquinone rings of the former is larger than that of the latter. In the solid state, compound 18 might have an intermolecular hydrogen-bonded structure with little intramolecular hydrogen bonding. This hydrogen bond might forbid charge transfer from the hydroquinone ring to the quinone ring in 18 . Such intermolecular hydrogen bonding might disturb the n, π^{*} excitation of the quinone ring of 18. Thus, in the solid state, $\mathbf{1 8}$ might exist as a colorless compound. On the other hand, dissolution of 18 should destroy the intermolecular hydrogen bonding in the solid state, and an intramolecular charge-transfer complex might result (Scheme VI).

An alternative explanation is that compound 18 in the solid state has the bis-dienone structure $\mathbf{1 8}^{\prime}$, but exists in solution as the charge-transfer complex 18 (Scheme VII). However, the bis(dienone) structure $\mathbf{1 8}^{\prime}$ can be discounted for the following reasons: (i) compound 18 was easily converted to 7 a by treatment with $10 \% \mathrm{NaOH}$ solution; (ii) the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 18 in solution does not give the expected chemical shifts of $\mathbf{1 8}^{\prime}$ (this might mean that there is no such equilibrium); (iii) many dienone compounds are colored. ${ }^{16}$

Scheme VII

Unequivocal evidence for the structure of compound 18 in the solid state must await X-ray analysis. Unfortunately, a suitable crystal of 18 has not yet been grown.

Experimental Section

All melting and boiling points are uncorrected. NMR spectra were determined at 100 MHz with Nippon Denshi JEOL FT-100 NMR spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal reference. IR spectra were measured as KBr pellets or liquid films on NaCl plates with a Nippon Bunko IR-A-102 spectrometer. Mass spectra were obtained with a Nippon Denshi, JMS-01SA-2 spectrometer at 75 eV , using a direct-inlet system.
Demethylation of 5 . To a solution of $9.0 \mathrm{~g}(23.7 \mathrm{mmol})$ of 5 in 640 mL of dry benzene at room temperature was added a solution of 15 mL (158 mmol) of BBr_{3} in 100 mL of benzene over a period of 5 h . After the reaction mixture was stirred at room temperature for 155 h , it was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo to leave a residue that after column chromatography (silica gel) afforded crude 6a. Recrystallization from hexane gave $7.16 \mathrm{~g}(86 \%)$ of 6 a : colorless prisms (hexane); mp $267-268^{\circ} \mathrm{C}$; IR (KBr) $3575,3040,2960,1480$, $1360,1190,885,870,760,730 \mathrm{~cm}^{-1}$; NMR (CDCl_{3}) $\delta 1.28(18 \mathrm{H}, \mathrm{s})$, $2.14\left(2 \mathrm{H}, \mathrm{s}\right.$, exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.76(8 \mathrm{H}, \mathrm{s}), 7.08(4 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 352\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2}: \mathrm{C}, 81.77$; $\mathrm{H}, 9.15$. Found: C, 81.67, H, 9.17.
Preparation of 5,13-Di-tert-butyl-8-bydroxy-16-methoxy [2.2]metacyclophane (6 b). To a solution of $250 \mathrm{mg}(0.66 \mathrm{mmol})$ of 5 in 30 mL of benzene at room temperature was added a solution of 0.5 mL (5.3 mmol) of BBr_{3} in 1 mL of benzene. After the reaction mixture was stirred at room temperature for 24 h , it was treated as described above to give a mixture of $\mathbf{6 a}$ and $\mathbf{6 b}(1: 1)$ with a total yield of 70%. The separation of $\mathbf{6 a}$ and $\mathbf{6 b}$ was carried out by fractional recrystallization from hexane. 6b: colorless prisms (hexane); mp $182-183^{\circ} \mathrm{C}$; IR (KBr) $3550,3040,2960,1480,1360,1285,1190,1025,890,860 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.30(9 \mathrm{H}, \mathrm{s}), 1.32(9 \mathrm{H}, \mathrm{s}), 1.94\left(1 \mathrm{H}, \mathrm{s}\right.$, exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $2.69(8 \mathrm{H}, \mathrm{m}), 2.95(3 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 366\left(\mathrm{M}^{+}\right)$. Anal. Caled for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 81.92; H, 9.35. Found: C, $82.02 ; \mathrm{H}, 9.32$.
Oxidation of 6 a with $\mathrm{Tl}\left(\mathrm{OCOCF}_{3}\right)_{3}$. To a standard solution of 100 mL of trifluoroacetic acid (TFA) containing 69.3 mmol of $\mathrm{Tl}(\mathrm{TFA})_{3}$ was added $5.28 \mathrm{~g}(15 \mathrm{mmol})$ of 6 a , and the resulting deep red mixture stirred at room temperature for 4.5 h . The bulk of the TFA was then removed by evaporation under reduced pressure and the residue poured into ice water. The quinone that separated at this stage was extracted with chloroform, and the chloroform extracts were washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the solution gave the crude quinone, that after recrystallization from acetone gave $2.66 \mathrm{~g}(66 \%)$ of 7 a : pale yellow prisms (acetone); $\mathrm{mp} 285-290^{\circ} \mathrm{C}$ dec; IR (KBr) 3050,2950 , $1660,1610,1290,1200,935,890,800 \mathrm{~cm}^{-1} ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\max } 263 \mathrm{~nm}$ ($\epsilon 1560$); NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.78\left(8 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}\right.$ pattern, $\left.J=8 \mathrm{~Hz}\right), 6.44$ $(4 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 268\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{C}$, 71.63 ; H, 4.51. Found: C, $71.44 ; \mathrm{H}, 4.67$.

Oxidation of 6 b with $\mathrm{Tl}\left(\mathrm{OCOCF}_{3}\right)_{3}$. To a solution of $136 \mathrm{mg}(0.371$ mmol) of 6 b in 1 mL of TFA was added $0.93 \mathrm{~mL}(0.817 \mathrm{mmol})$ of freshly prepared TTFA solution. After the reaction mixture was stirred at room temperature for 2 h , it was poured into ice water and treated as described above. Chloroform extracts were evaporated in vacuo to leave a residue that after recrystallization from hexane gave $84 \mathrm{mg}(70 \%)$ of 7 b : yellow needles (hexane); $\mathrm{mp} 208-209^{\circ} \mathrm{C}$; IR (KBr) $3040,2960,1650,1600$, 1480, 1270, 1210, 1010, 880, $790 \mathrm{~cm}^{-1}$; UV ($\mathrm{CH}_{3} \mathrm{CN}$) $\lambda_{\text {max }} 257 \mathrm{~nm}(6$ 18000); NMR (CDCl_{3}) $\delta 1.35(9 \mathrm{H}, \mathrm{s}), 2.35-3.14(8 \mathrm{H}, \mathrm{m}), 3.53(3 \mathrm{H}$, s), $6.31(2 \mathrm{H}, \mathrm{s}), 7.01(2 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 324\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}$: C, 77.75; H, 7.46. Found: $\mathrm{C}, 77.51 ; \mathrm{H}, 7.46$.
Trans-tert-butylation of 6 a . To a solution of $1.57 \mathrm{~g}(4.46 \mathrm{mmol})$ of 6 a in 60 mL of benzene was added a solution of 4.5 g (33.75 mmol) of anhydrous aluminum chloride in 6 mL of nitromethane. After the reaction mixture was stirred for 24 h at room temperature, the reaction was quenched by the addition of 10% hydrochloric acid, and the solution was washed with water, dried over sodium sulfate, and concentrated in vacuo to leave a residue that gave upon recrystallization from hexane:benzene ($1: 1$) $0.752 \mathrm{~g}\left(70 \%\right.$) of 9 b : pale yellow prisms (hexane); mp 223-228 ${ }^{\circ} \mathrm{C}$; IR (KBr) $3570,1590,1460,1255,1195,1170,900,815,770,735 \mathrm{~cm}^{-1}$;

NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.57(2 \mathrm{H}, \mathrm{s}), 2.76(8 \mathrm{H}, \mathrm{m}), 7.02(6 \mathrm{H}, \mathrm{m})$; mass spectrum, $m / e 240\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$: $\mathrm{C}, 79.97 ; \mathrm{H}, 6.71$. Found: C, 79.69; H, 6.73.

Nitrosoation of $\mathbf{9 b}$. To a solution of $240 \mathrm{mg}(1 \mathrm{mmol})$ of 9 b and 2.5 mL of concentrated hydrochloric acid in 15 mL of dioxane was added a solution of $0.21 \mathrm{~g}(3 \mathrm{mmol})$ of sodium nitrite in 10 mL of water at room temperature. The yellow precipitate that formed was collected and washed with water, ethanol, and hexane to give 12 quantitatively: pale yellow prisms; $\mathrm{mp} 280-300^{\circ} \mathrm{C}$ dec; $\mathrm{IR}(\mathrm{KBr}) 3000-3400,1625,1420$, $1305,1100,900,800 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.70(8 \mathrm{H}, \mathrm{m}), 6.88(2$ $\mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 12.84(1 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 298\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~N}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 63.46; H, 4.83; N, 9.25. Found: C, 63.35; H, 5.00; N, 9.17.

Reaction of 7a with Hydroxylamine. To a solution of 268 mg (1 mmol) of 7 a in 50 mL of tetrahydrofuran was added a solution of 500 mg (7.1 mmol) of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ and 200 mg (5 mmol) of sodium hydroxide in 10 mL of water. After the reaction mixture was refluxed for 5 h on a water bath, the solvent was evaporated in vacuo to leave a residue was left that was washed with water, ethanol, and hexane and gave 190 mg (64%) of 12.

Preparation of [2.2]Metacyclophanequinone (7a) from 12. To a solution of $60 \mathrm{mg}(0.2 \mathrm{mmol})$ of 12 in 20 mL of acetic acid was added 5 g of zinc powder. After the reaction mixture was refluxed for 20 min on a water bath, it was filtered and the filtrate was directly added to a solution of 2 mL of fuming nitric acid in 100 mL of water at room temperature. When the reddish brown solution was heated for 10 min on a water bath, it turned pale yellow and, after standing overnight at room temperature, formed a pale yellow precipitate. It was filtered and washed with water, ethanol, hexane, and acetone to give 37 mg (68.5%) of 7 a .

Acetylation of Diamino Derivatives 13. To a solution of $33 \mathrm{mg}(0.1$ mmol) of 12 in 8 mL of ethanol and 10 mL of acetic anhydride was added 4.8 g of freshly prepared $\mathrm{W}-2$ Raney nickel, and the reaction mixture was heated under reflux for 30 min . After the solution was filtered and concentrated, the residue was washed with water and hexane to give 10 mg of 14: colorless prisms; $\mathrm{mp}>300^{\circ} \mathrm{C}$; IR (KBr) 3360 $\left(\nu_{\mathrm{NH}}\right), 3530\left(\nu_{\mathrm{OH}}\right), 1630\left(\nu_{\mathrm{C}}-\mathrm{O}\right), 1545,1470 \mathrm{~cm}^{-1} ;$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta$ $2.16(6 \mathrm{H}, \mathrm{s}), 2.60(8 \mathrm{H}, \mathrm{m}), 6.60(4 \mathrm{H}, \mathrm{s}), 6.60(2 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 354\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.10 ; \mathrm{H}$, 6.38; N, 7.52. Found: C, 66.40; H, 6.24; N, 7.05.

Reduction of 7a with Raney Ni (W-2). Freshly prepared W-2 Raney $\mathrm{Ni}(4.8 \mathrm{~g})$ was added to a solution of $134 \mathrm{mg}(0.5 \mathrm{mmol})$ of 7 a in 8 mL of ethanol and the mixture was heated under reflux for a few minutes. After the solution was filtered and concentrated, the residue was washed with water and hexane to give $122 \mathrm{mg}(90 \%)$ of 15 : pale purple prisms; $\mathrm{mp} 270-280^{\circ} \mathrm{C}$ dec; IR (KBr) 3450, $3225\left(\lambda_{\mathrm{OH}}\right) 1595,1460,1440,1340$, 1280, 1120, 1190, $980,890,850,770,730 \mathrm{~cm}^{-1}$; UV $\lambda_{\max }{ }_{\mathrm{EtOH}} 304(\epsilon$ 4290), $209(\epsilon 18800) \mathrm{nm} ;$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.5(8 \mathrm{H}, \mathrm{m}), 5.0(2 \mathrm{H}$, s , exchanged by $\mathrm{D}_{2} \mathrm{O}$); mass spectrum, m / e (relative intensity) $272\left(\mathrm{M}^{+}\right.$, $100), 255\left(\mathrm{M}^{+}-\mathrm{OH}, 53\right), 238\left(\mathrm{M}^{+}-2 \mathrm{OH}, 63\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 70.58 ; \mathrm{H}, 5.92$. Found: $\mathrm{C}, 70.70 ; \mathrm{H}, 5.95$.

Reduction of 7a with Zinc Powder in Acetic Acid. To a solution of 500 $\mathrm{mg}(1.87 \mathrm{mmol})$ of 7 a in 50 mL of acetic acid was added 8 g of zinc powder, and the solution was heated under reflux for 10 min . After the pale yellow reaction mixture became colorless, it was filtered, concentrated to leave a residue that after washing with water and hexane gave 453 mg (89%) of 15.

Reduction of 7a with Zinc Powder in the Presence of $\mathbf{H C l}$. To a solution of $50 \mathrm{mg}(0.187 \mathrm{mmol})$ of 7 a in 10 mL of acetic acid was added 800 mg of zinc powder, 10 mL of acetic anhydride, and 0.2 mL of concentrated hydrochloric acid. After the pale yellow reaction mixture became colorless, it was filtered and concentrated to leave after washing the residue with water, ethanol, and hexane, $65.3 \mathrm{mg}(80 \%)$ of 17: colorless prisms; $\mathrm{mp}>300^{\circ} \mathrm{C}$; IR (KBr) $1750,1445,1430,1365,1220$, $1210,1170,1120,1010,930,900,805,730,710 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.84(6 \mathrm{H}, \mathrm{s}), 2.25(6 \mathrm{H}, \mathrm{s}), 2.08-2.85(8 \mathrm{H}, \mathrm{m}), 6.96(4 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 440\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{8} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 64.79; H, 5.55. Found: C, 64.76, H, 5.51.

Oxidation of 15 with $10 \% \mathrm{NaOH}$ Solution. To $50 \mathrm{mg}(0.184 \mathrm{mmol})$ of 15 was added 5 mL of $10 \% \mathrm{NaOH}$ solution. The reaction mixture immediately turned pale yellow and a pale yellow precipitate formed. This solid was collected and washed with water, ethanol, and hexane to give 7a in quantitative yield.

Reduction of 7a with Zinc Powder in Acetic Acid-Anhydrous Acetic Acid. To a solution of $67 \mathrm{mg}(0.25 \mathrm{mmol})$ of 7 a in 10 mL of acetic acid
and 10 mL of acetic anhydride was added 3 g of zinc powder. After the pale yellow reaction mixture became colorless, it was filtered and concentrated to leave the residue, which was washed with water, ethanol, and hexane to give $64.2 \mathrm{mg}(72 \%)$ of 16 : colorless prisms; mp $250-280^{\circ} \mathrm{C}$ dec; IR (KBr) 3530, 2940, 1735, 1590, 1470, 1465, 1430, 1365, 1250, $1210,1120,1010,970,880,850,770,740,700 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ $\delta 2.16(6 \mathrm{H}, \mathrm{s}), 2.60(8 \mathrm{H}, \mathrm{m}), 6.60(4 \mathrm{H}, \mathrm{s}), 6.60(2 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 356\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}: \mathrm{C}, 67.41 ; \mathrm{H}, 5.66$. Found: C, 67.56; H, 5.60.

Acetylation of 16 To Give 17. To a solution of $50 \mathrm{mg}(0.140 \mathrm{mmol})$ of 16 in 20 mL of acetic anhydride was added 0.5 mL of concentrated hydrochloric acid. After the reaction mixture was refluxed for a few minutes, it was concentrated to leave the residue, which was washed with water, ethanol, and hexane, to give 17 in quantitative yield.

Oxidation of 15 in Ethanol. A solution of $50 \mathrm{mg}(0.184 \mathrm{mmol})$ of 15 in 30 mL of ethanol was refluxed for a few minutes. After the reaction mixture was cooled, a small amount of colorless prisms precipitated. These were collected and washed with ethanol and hexane to give 18: colorless prisms; $\mathrm{mp}>300^{\circ} \mathrm{C}$; IR (KBr) $3400,1670,1610 \mathrm{~cm}^{-1}$; UV $\lambda_{\max } \mathrm{EtOH} 206(\log \epsilon 4.14), 261(\log \epsilon 4.22), 457(\log \epsilon 2.42)$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 2.5(8 \mathrm{H}, \mathrm{m}), 6.24(2 \mathrm{H}, \mathrm{s}), 6.32(2 \mathrm{H}, \mathrm{s}), 7.80(1 \mathrm{H}, \mathrm{s})$, $8.80(1 \mathrm{H}, \mathrm{s})$; mass spectrum, $m / e 270\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 71.10 ; H, 5.22. Found: C, 71.10; H, 5.17.

Oxidation of 15 with p-Benzoquinone. To a solution of $50 \mathrm{mg}(0.184$ mmol) of 15 in 30 mL of ethanol was added $39.8 \mathrm{mg}(0.368 \mathrm{mmol})$ of p-benzoquinone (19). After the reaction mixture was refluxed for a few minutes, it was cooled to give 18 in almost quantitative yield.

Reaction of 15 and 7a To Give 18 . To a solution of $50 \mathrm{mg}(0.184$ mmol) of 15 in 30 mL of tetrahydrofuran was added 50 mg (0.187 mmol) of 7a. After the reaction mixture was refluxed for 1 h , it was cooled and gave 18 in almost quantitative yield.

Reduction of 18 with Zinc Powder in Acetic Acid. To a solution of 50 $\mathrm{mg}(0.185 \mathrm{mmol})$ of 18 in 10 mL of acetic acid was added 800 mg of zinc powder, and the solution was heated under reflux for 10 min . After the pale yellow reaction mixture became colorless, it was filtered and concentrated and after the residue was washed with water and hexane, gave 15 in quantitative yield.

Oxidation of 18 with $10 \% \mathrm{NaOH}$ Solution. To $50 \mathrm{mg}(0.185 \mathrm{mmol})$ of 18 was added 5 mL of $10 \% \mathrm{NaOH}$ solution. The colorless reaction mixture immediately turned pale yellow and a pale yellow precipitate formed. This solid was collected and washed with water, ethanol, and hexane to give 7 a in quantitative yield.

Acetylation of 18 with Acetic Anhydride. To a suspension of 160 mg (0.59 mmol) of 18 in 30 mL of acetic anhydride was added 1 mL of concentrate hydrochloric acid. After the reaction mixture was refluxed for a few minutes, it was concentrated and upon recrystallization from hexane-benzene (1:1) gave 21 in quantitative yield: yellow prisms (hexane-benzene 1:1); $\mathrm{mp} 230-250^{\circ} \mathrm{C}$ dec; IR (KBr) 2920, 1760, 1645, $1460,1365,1210,1170,1025,900,785 \mathrm{~cm}^{-1}$; UV $\lambda_{\max } \mathrm{CHCl}_{3} 257(\log \lambda$ 4.28), $320(\log \epsilon 3.01) \mathrm{nm} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.10(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}$, s), 2.42-3.10 ($8 \mathrm{H}, \mathrm{m}$), $6.37(2 \mathrm{H}, \mathrm{s}), 6.86(2 \mathrm{H}, \mathrm{s})$; mass spectrum, m / e $354\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}: \mathrm{C}, 67.79 ; \mathrm{H}, 5.12$. Found: C , 67.89; H, 5.15.

Reduction of 21 with Zinc Powder in Acetic Acid. To a solution of 210 $\mathrm{mg}(0.593 \mathrm{mmol})$ of 21 in 15 mL of acetic acid was added 3 g of zinc powder, and the solution was heated under reflux for 10 min . After the pale yellow reaction mixture became colorless, it was filtered and concentrated to leave the residue, which was washed with water, ethanol, and hexane gave $150 \mathrm{mg}(71 \%)$ of 22: colorless crystals; mp 192-207 ${ }^{\circ} \mathrm{C}$ dec; IR (KBr) 3460, 3350, 2930, 1750, 1730, 1590, 1455, 1365, 1220, 1180, $1010,975,910 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right) \delta 1.80(3 \mathrm{H}, \mathrm{s}), 2.20(3 \mathrm{H}, \mathrm{s})$, 2.5-2.7 ($8 \mathrm{H}, \mathrm{m}$), $6.14\left(1 \mathrm{H}, \mathrm{s}\right.$, exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.38(2 \mathrm{H}, \mathrm{s}), 6.83$ $(2 \mathrm{H}, \mathrm{s}), 8.36\left(1 \mathrm{H}, \mathrm{s}\right.$, exchanged by $\left.\mathrm{D}_{2} \mathrm{O}\right)$) mass spectrum, $m / e 356$ $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.75 ; \mathrm{H}, 5.79$. Found: C, 65.75 ; H, 5.53 .

Acetylation of 22 with Acetic Anhydride. To a suspension of 35 mg (0.01 mmol) of 22 in 8 mL of acetic anhydride was added 0.5 mL of concentrated hydrochloric acid. After the reaction mixture was stirred for 2 days at room temperature, the resulting precipitate was filtered and washed with hexane to give $20 \mathrm{mg}(46 \%)$ of 17 .

Registry No. 5, 72523-20-7; 6a, 71777-27-0; 6b, 72523-21-8; 7a, 71777-29-2; 7b, 81688-20-2; 9b, 81688-21-3; 12, 81688-22-4; 14, 81704-70-3; 15, 81688-23-5; 16, 81688-24-6; 17, 81688-25-7; 18, 81688-26-8; 21, 106-51-4; 22, 81688-28-0.

[^0]: (1) (a) A part of this paper was published as a preliminary communication: Tashiro, M.; Yamato, T. Chem. Lett. 1979, 595. (b) Part 4: Tashiro, M.; Yamato, T. J. Am. Chem. Soc., preceding paper in this issue.
 (2) (a) Research Institute of Industrial Sciences. (b) Department of Molecular Science and Technology.
 (3) Cram, D. J.; Day, A. C. J. Org. Chem. 1966, 31, 1227.
 (4) Rebafka, W.; Staab, H. A. Angew. Chem. 1973, 85, 831.
 (5) Rebafka, W.; Staab, H. A. Angew. Chem. 1974, 86, 234.
 (6) Staab, H. A.; Rebafka, W. Chem. Ber. 1977, 110, 3333.
 (7) Staab, H. A.; Rebafka, W. Chem. Ber. 1977, 110, 3351.
 (8) Vogler, H.; Ege, G.; Staab, H. A. Tetrahedron 1975, 31, 2441.
 (9) Staab, H. A.; Herz, C. P.; Henke, H. W. Tetrahedron Lett. 1974, 4393.
 (10) Staab, H. A.; Herz, C. P.; Döhling, A. Tetrahedron Lett. 1979, 791.
 (11) Tashiro, M.; Yamato, T. Chem. Lett. 1979, 595.

[^1]: (12) McKillop, A.; Fowler, J. S.; Zelesko, M. J.; Hunt, J. D. Tetrahedron Lett. 1969, 2423.
 (13) McKillop, A.; Swann, B. P.; Taylor, E. C. Tetrahedron 1970, 26, 4031.
 (14) Shinmyozu, T.; Inazu, T.; Yoshino, T. Chem. Lett. 1978, 1319.
 (15) Tashiro, M.; Yamato, T. Synthesis 1978, 435.

